AutoGen
Enable next-generation LLM applications with multi-agent conversations
Pythonmedium
AutoGen enables building multi-agent conversation systems. Decyra captures all agent-to-agent and agent-to-LLM interactions, providing complete visibility into your AutoGen workflows.
Prerequisites
- Decyra account with API key
- Python 3.8+ installed
- AutoGen package installed
Installation
pip install pyautogen decyra-sdk
Integration
Configure the model with Decyra's proxy in the config list:
import autogen
import os
config_list = [
{
'model': 'gpt-4',
'api_key': os.getenv('DECYRA_API_KEY'),
'base_url': 'https://proxy.decyra.com/v1',
'api_type': 'open_ai',
}
]
llm_config = {
'config_list': config_list,
'temperature': 0.7,
}
Create and use ConversableAgent:
assistant = autogen.AssistantAgent(
name="assistant",
llm_config=llm_config,
system_message="You are a helpful assistant."
)
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
)
user_proxy.initiate_chat(
assistant,
message="Write a Python function to calculate fibonacci numbers"
)
What Gets Captured
| Field | Description |
|---|---|
| Model | The AI model identifier |
| Temperature | Temperature setting |
| Agent Name | Name of the agent making the call |
| Conversation Turn | Turn number in the conversation |
| Prompt Hash | Hash of the conversation context |
| Response Time | Time for each agent response |
| Token Usage | Tokens used per interaction |
| Cost | Cost per agent interaction |
Verify
Visit your Decyra dashboard to see all agent interactions. Each conversation turn will appear as a separate trace with full context.